Dimension and Height for Posets with Planar Cover Graphs

نویسندگان

  • Noah Streib
  • William T. Trotter
چکیده

We show that for each integer h ≥ 2, there exists a least positive integer ch so that if P is a poset having a planar cover graph and the height of P is h, then the dimension of P is at most ch. Trivially, c1 = 2. Also, Felsner, Li and Trotter showed that c2 exists and is 4, but their proof techniques do not seem to apply when h ≥ 3. We focus on establishing the existence of ch, although we suspect that the upper bound provided by our proof is far from best possible. From below, a construction of Kelly is easily modified to show that ch must be at least h + 2. © 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minors and Dimension

It has been known for 30 years that posets with bounded height and with cover graphs of bounded maximum degree have bounded dimension. Recently, Streib and Trotter proved that dimension is bounded for posets with bounded height and planar cover graphs, and Joret et al. proved that dimension is bounded for posets with bounded height and with cover graphs of bounded tree-width. In this paper, it ...

متن کامل

The Dimension of Posets with Planar Cover Graphs

Kelly showed that there exist planar posets of arbitrarily large dimension, and Streib and Trotter showed that the dimension of a poset with a planar cover graph is bounded in terms of its height. Here we continue the study of conditions that bound the dimension of posets with planar cover graphs. We show that if P is a poset with a planar comparability graph, then the dimension of P is at most...

متن کامل

The dimension of posets with planar cover graphs excluding two long incomparable chains

It has been known for more than 40 years that there are posets with planar cover graphs and arbitrarily large dimension. Recently, Streib and Trotter proved that such posets must have large height. In fact, all known constructions of such posets have two large disjoint chains with all points in one chain incomparable with all points in the other. Gutowski and Krawczyk conjectured that this feat...

متن کامل

Sparsity and dimension

We prove that posets of bounded height whose cover graphs belong to a fixed class with bounded expansion have bounded dimension. Bounded expansion, introduced by Nešetřil and Ossona de Mendez as a model for sparsity in graphs, is a property that is naturally satisfied by a wide range of graph classes, from graph structure theory (graphs excluding a minor or a topological minor) to graph drawing...

متن کامل

Characterization problems for graphs, partially ordered sets, lattices, and families of sets

A standard problem in combinatorial theory is to characterize structures which satisfy a certain property by providing a minimum list of forbidden substructures, for example, Kuratowski's well known characterization of planar graphs. In this paper, we establish connections between characterization problems for interval graphs, circular arc graphs, comparability graphs, planar lattices, 0--1 mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011